

Breast Cancer Risk and Screening

Victoria Seewaldt, M.D. ...and Tom

Risk for BrCA aging vs. TNBC

Breast cancer risk - ER+ breast cancer of aging

Age –age increases risk Parity – more children protects Early childbearing – protective Early obesity – thought to reduce risk Late obesity – increases risk ER+ breast cancer

TNBC risk – Carolina Breast Study – Bob Millikan

Young – old age not a risk factor

- Parity more children INCREASES risk
- Early childbearing INCREASES risk
- Early obesity controversial

[Carey, L et al., JAMA, 2006]

Risk models and Risk Assessment

- Gail Model
- Tyer-Cuzick Model
- Genetic Testing
- Mammographic density

Gail Model Risk Model

National Cancer Institute	U.S. National Institutes of Health www.cancer.gov
Breast Cancer Risk Assessment Tool An interactive tool to help estimate a woman's risk of developing breast cancer	
Risk Tool	
 (Click a question number for a brief explanation, or <u>read all explanations</u>.) 1. Does the woman have a medical history of any breast cancer or of <u>ductal carcinoma in situ (DCIS)</u> or <u>lobular carcinoma in</u> <u>situ (LCIS)</u> or has she received previous radiation therapy to the chest for treatment of Hodgkin lymphoma? 2. Does the woman have a mutation in either the <u>BRCA1</u> or <u>BRCA2</u> gene, or a diagnosis of a genetic syndrome that may be associated with elevated risk of breast cancer? 	 Risk factors – age, menarche, menopause, biopsy, first degree relatives.
 3. What is the woman's age? This tool only calculates risk for women 35 years of age or older. 4. What was the woman's age at the time of her first menstrual 	Most accurate in non-Latina White women who receive mammograms
<u>period</u> ? <u>5.</u> What was the woman's age at the time of her first live birth of a child?	Underestimates risk, particularly in African American women

Select

Select

Select

Select

Calculate Risk >

Select

Select

÷

÷

÷

+

\$

÷

How many of the woman's first-degree relatives - mother,

7a. How many breast biopsies (positive or negative) has the

7b. Has the woman had at least one breast biopsy with

sisters, daughters - have had breast cancer?

7. Has the woman ever had a breast biopsy?

woman had?

atypical hyperplasia?

8. What is the woman's race/ethnicity?

8a. What is the sub race/ethnicity?

6.

CARE study – better estimates risk in African American women

Not appropriate for women with familial breast cancer

http://www.cancer.gov/bcrisktool/

Gail Model Risk Model

National Cancer Institute

U.S. National Institutes of Health | www.cancer.gov

Breast Cancer Risk Assessment Tool

An interactive tool to help estimate a woman's risk of developing breast cancer

Ri	sk Tool		
(C	lick a question number for a brief explanation, or <u>read all explanati</u>	ons.)	
1	Does the woman have a medical history of any breast cancer or of <u>ductal carcinoma in situ (DCIS)</u> or <u>lobular carcinoma in</u> <u>situ (LCIS)</u> or has she received previous radiation therapy to the chest for treatment of Hodgkin lymphoma?	No	÷
<u>2</u> .	Does the woman have a mutation in either the <u>BRCA1</u> or <u>BRCA2</u> gene, or a diagnosis of a genetic syndrome that may be associated with elevated risk of breast cancer?	No	*
<u>3</u> .	What is the woman's age? This tool only calculates risk for women 35 years of age or older.	35	÷
<u>4</u> .	What was the woman's age at the time of her first menstrual period?	7 to 11	÷
<u>5</u> .	What was the woman's age at the time of her first live birth of a child?	< 20	Ť
<u>6</u> .	How many of the woman's first-degree relatives - mother, sisters, daughters - have had breast cancer?	0	÷,
<u>7</u> .	Has the woman ever had a breast <u>biopsy</u> ?	No	÷
	<u>7a</u> . How many breast biopsies (positive or negative) has the woman had?	Select	÷
	<u>7b</u> . Has the woman had at least one breast biopsy with <u>atypical hyperplasia</u> ?	No	Ť
<u>8</u> .	What is the woman's race/ethnicity? African American		÷
	8a. What is the sub race/ethnicity? Select		÷
		Calculate	lick N

Lifetime Risk of Developing Breast Cancer

- > This woman (to age 90): 9.8%
- > Average woman (to age 90): 10.1%

Explanation

Based on the information provided (see below), the woman's estimated risk for developing invasive breast cancer over her lifetime (to age 90) is 9.8% compared to a risk of 10.1% for a woman of the same age and race/ethnicity from the general U.S. population.

http://www.cancer.gov/bcrisktool/

Tyrer-Cuzick – or IBIS Tool

Likelihood of BRCA1 or BRCA2 mutation

Inform decision-making about genetic counselling and testing.

>10% - mutation in BRCA1, BRCA2, - genetic counseling.^[53]
Risk estimated based on :

- Body mass index
- Age at menarche, OB hx
- Age at menopause (if applicable)
- Benign breast biopsy hyperplasia, atypical hyperplasia, LCIS
- Hx ovarian cancer
- Use of hormone replacement therapy
- Family history (including breast and ovarian cancer, Ashkenazi inheritance, genetic testing if done)

Tyrer–Cuzick - most consistently accurate, whereas the Gail, Claus, and Ford models significantly underestimate risk.

Boughey *et al* - Tyrer-Cuzick model significantly overestimated in women with atypical hyperplasia.

Amir E et al. J Med Genet. 2003; Boughey JC et al. JCO, 2010

BRCA1 - BRCA2 and other germline mutations

BRCA1

- Chromosome 17 discovered by Mary-Clair King
- High frequency TNBC 40-60% lifetime
- Fallopian tube/Ovarian cancer, pancreas, skin, prostate
- True risk of developing breast cancer not known
- With MRI screening >60% need for chemotherapy 4

BRCA2

- Chromosome 13
- High frequency ER+ breast cancer 40-55% lifetime
- Fallopian tube/Ovarian cancer, pancreas, skin, prostate
- Good prognosis for breast, not for prostate
- MRI screening <20% need for chemotherapy

Other germline mutation – ATM, BARD1, CDH1, CHEK2, NF1, PALB2, PTEN, RECQL, STK11, and TP53

Roy, R. et al. Nature Reviews Cancer 2012; Wang, J et al. Frontiers, 2021

Triple-Negative Breast Cancer (ER/PR-/HERwt)

- majority low BRCA1 protein expr. - no germline or somatic mt

Frequency BRCA1 mt - 51% Ashkenazi

- 38% European American
- 29% Latina
- 26% Asian
- 19% African American
- 5.6% Lebanese
- 0.6% Palestinian

Greenup et al. *Ann Surg Onc* 2013 Jalkh et al. BMC Med Genomics, 2017

Genetic Studies – Cautionary Tale

Genomic analysis of inherited breast cancer among Palestinian women: Genetic heterogeneity and a founder mutation in TP53

Suhair Lolas Hamameh^{1,2}, Paul Renbaum², Lara Kamal¹, Dima Dweik¹, Mohammad Salahat¹, Tamara Jaraysa¹, Amal Abu Rayyan¹, Silvia Casadei³, Jessica B. Mandell³, Suleyman Gulsuner³, Ming K. Lee³, Tom Walsh³, Mary-Claire King³, Ephrat Levy-Lahad², and Moein Kanaan¹ Hamameh SL et al. Int J. Cancer, 2017

875 Palestinian women with invasive breast cancer
453 dx < 40, or Br/OV - mother, sister, grandmother, or aunt
422 women dx age >40 and with negative family history.
0.6% BRCA1, 1.1% BRCA2, 0.8% TP53
<0.1% ATM, PTEN, BARD, BRIP1, PALB2, PTEN
Most frequent mutation TP53 p.R181C

Issues

Women with *TP53* mutation - no Li Fraumeni pattern of cancers Tested post chemo – no skin biopsy Did not inform women of dx – hence no family testing

Mammographic Density

Mammographic density and breast cancer risk for women of EUROPEAN descent

- NBSS 5.66 (2.8,11.3) p<0.001 (Boyd Canada)
- OBSP 3.39 (1.1,10.3) p<0.001 (Boyd Canada)
- SMPBC 4.52 (1.9,11.0) p<0.001 (Boyd Canada)
- Combined 4.74 (3.0.7.4) p<0.001

[Boyd et al. Breast Cancer Res, 2013]

African American women have low mammographic density

	No.	Total No. of				
Race	1	2	3	4	Patients (%)	
Asian	4 (0.92)	69 (15.86)	244 (56.09)	118 ^b (27.13)	435 (2.84)	
White	831 (6.54)	3,463 (27.26)	6,825 (53.72)	1,585 (12.48)	12,704 (83.1)	
African American	47 (8.38)	174 (31.02)	290 (51.69)	50 (8.91)	561 ^c (3.67)	
Other ^d	150 (9.42)	465 (29.21)	830 (52.14)	147 (9.23)	1,592 (10.4)	
Total	1,032	4,171	8,189	1,900	15,292	

Increasing Density

Low Density Asian 16% EA 27% AA 39%

High Density Asian 27% EA 12% AA 9%

[del Carmen et al AJR, 2007]

Mammographic density does not predict risk for individuals – only populations

Model	AUC (Cecchini)	AUC (Chen)	AUC (Tice)	AUC (Barlow)
Gail	0.63	0.596	0.67	0.605
Gail + density	0.64	0.643	0.68	0.624
Density	0.55	-	0.67	0.571

False positive

Low density predicts death from breast cancer

NCI-sponsored Breast Cancer Consortium

- 9,000 women
- January 1996 and December 2005, 6.6 years average
- 1,795 deaths, 889 breast cancer, 810 other causes.

Women with high-density had increased risk of breast cancer but high-density predicted good survival

Women with **low breast density** had **lower risk of breast cancer** but low-breast density predicted **poor survival**.

Gierach GL, et al. Relationship between mammographic density and breast cancer death in the Breast Cancer Surveillance Consortium. JNCI, 2012.

Screening

- Breast Self-Examination
- Mammography
- MRI
- Experimental Imaging future discussion

Breast Self Exam – Shanghai Study

Factory owner

House Pension Health Care One child policy

Woman w/ breast mass

Chinese Medicine 1989-1991

- No imaging
- -? Surgery
- -? Treatment

Conclusion: Breast Self Exam NO difference cancer survival

Thomas et al. JNCI, 2002

ER+ and HER2+ BrCa: high frequency mammographic calcifications

ER+ breast cancer

High frequency calcifications - 79%

HER2+ breast cancers

High frequency calcifications - 71%

Calcifications

[Ko ES, et al. Eur Radiol. 201]

TNBC BrCa low frequency calcifications

Triple-negative breast cancers

Low frequency calcifications - 15% No findings - 30% Mass/Focal asymmetry - 32% Architectural distortion – 23%

TNBC?

[Briedienė et al, ACTA MEDICA LITUANICA. 2011 REVIEW]

No BRCA mutation, normal mammogram 4 months prior – found by BSE.

Original Investigation | Oncology

Comparison of Mortality Among Participants of Women's Health Initiative Trials With Screening-Detected Breast Cancers vs Interval Breast Cancers

Veronica L. Irvin, PhD, MPH; Zhenzhen Zhang, PhD, MPH; Michael S. Simon, MD; Rowan T. Chlebowski, MD, PhD; Shiuh-Wen Luoh, MD, PhD; Aladdin H. Shadyab, PhD; Jessica L. Krok-Schoen, PhD; Fred K. Tabung, PhD; Lihong Qi, PhD; Marcia L. Stefanick, PhD; Pepper Schedin, PhD; Sonali Jindal, MD

Breast MRI in High-Risk Women

300 premenopausal high-risk women

48 mos observation, 15 breast cancers

- 152 African American
- 148 Caucasian
- 6 Focal / Age shifted
- 9 Non-focal / Accelerated

Stephanie Robertson

Insulin-Driven Pre-Cancerous Biopsy *U01CA189283* - prospective (Duke, OSU, UT, USC, UW)

El Ayachi E et al. Cancer Res. 2019

Evidence for Loss of Lineage Fidelity – cKit+ K14/K19 U01CA189283 - prospective (Duke, OSU, UT, USC)

Expanded cKit+ K14/19 aging signature Wnt/β–catenin activation EZH2/pAkt/cMYC GeoMx in process

Shalabi S. et al. Nature Aging 2021

Wnt/beta-catenin, TNBC, immunosuppressive microenvironment

Wnt/beta-catenin major driver of aggressive TNBC biology

Wnt10B regulates cell fate decisions – differentiation adipocytes

Wnt/beta-catenin MDSC homing PMN-MDSC activation CD8+ T-helper cell exhaustion Spranger S Nature, 2015 Luke JJ et al. Clin Cancer Res., 2019 Li, X et al, Frontiers. 2019

Lehmann et al, J Clin Invest. 2011.

Gonzales et al. Cancer Res. 2011 Wend et al. EMBO, 2012 Ayachi et al. Cancer Res. 2019 Fatima et al. Cancers, 2020

Loss BRCA1 protein expression in TNBC

- Majority TNBC do not express nuclear BRCA1 protein
- Somatic mutation not early event
- Methylation inactivation is late not early

Celina Kleer – High EZH2/Akt1 block nuclear transport BRCA1

Wnt/βcatenin function in + feedback loop EZH2

Gonzales et al. Cancer Res. 2011 Wend et al. EMBO, 2012 Ayachi et al. Cancer Res. 2019 Fatima et al. Cancers, 2020

Breast Cancer Risk factors

- Aging needs a full lecture
- Estrogen, E/P, BCP, Abortion, Alcohol
- Obesity
- Pregnancy

Rozhok AI and DeGregori J. Challenging the axiom: does the occurrence of oncogeneic mutation truly limit cancer development with age? Oncogene 2013

Obesity does not consistently increase risk of premenopausal TNBC in Black/AA women

- Carolina Breast Basal type TNBC increased in obese premenopausal Black/African American women (WHR).
- Women's Contraceptive and Reproductive Experience (CARE) (BMI <u>></u>30) – No association
- Black Women's study (BMI) Adams-Campbell inverse association BMI and premenopausal cancer
- AMBER Association consortium Carolina Breast, Multiethnic cohort, Black Women's study *Adams-Campbell*, Women's Circle of Health - NO association (BMI, WHR)

Biphasic variable e.g. BMI \geq 30 YES or NO

Bandera EV, Chandran U, Hong CC, Troester MA, Bethea TN, Adams-Campbell LL, et al. Abrosone C. Obesity, body fat distribution, and risk of breast cancer subtypes in African American women participating in the AMBER Consortium. *Breast cancer research and treatment* (2015)

BMI does not always equal metabolic potential

Chiu M, et al. Diabetes Care 2011, 34:1741-8.

Significant individual variability in insulin resistance

Carolyn (sister) 58 years old 6'3" tall 239 lbs BMI = 30 Diet – high carbs Exercise – minimal, 30 pack year smoker Steps per day <500

HgbA1c = 5.2 Cholesterol (total) = 168

50 lb wt loss on Metformin

Vicky (AKA me) 62 years old 5'8" tall 125 lbs BMI = 19 Diet – low carb vegetarian + salmon Exercise – 90 min per day (swim, run) Steps per day >5,000 HgbA1c = 6.0 on 2500 mg Metformin Cholesterol (total) = 190 on Lipitor 40 mg

Insulin resistance and Type II Diabetes

- Increased Black/African American women
- Younger age of onset

Metformin mobilizes fat, decreases hunger

Pregnancy and Breast Cancer

Pregnancy before age 35 in non-Latina Whites

- Ultimately, risk reduction
- Over age 35 increased risk
- Risk does not normalize for African American women

For all women – pregnancy, involution, postpartum

- All women increased initial risk 1-3-10 years
- Risk highest for TNBC
- Women who self identify as African American, Black, etc. highest risk

Pepper Schedin – Schedin Nat Rev. Cancer, 2006; Vohra SN et al. CEBP, 2021 Bernhardt S et al. Nature Comm, 2021

Gooch JC et al. Pregnancy-associated breast cancer in a contemporary cohort of newly diagnosed women Breast Journal 2020

Pregnancy is a state of immune suppression

ARTICLE

Continuous activation of polymorphonuclear myeloid-derived suppressor cells during pregnancy is critical for fetal development

Mengyu Shi¹, Ziyang Chen¹, Meiqi Chen¹, Jingping Liu², Jing Li³, Zhe Xing¹, Xiaogang Zhang¹, Shuaijun Lv¹, Xinyao Li¹, Shaowen Zuo¹, Shi Feng¹, Ying Lin¹, Gang Xiao², Liping Wang⁴ and Yumei He^{1,2,5,6}

MDSCs important for feto-maternal tolerance, Continuous activation PMN-MDSCs during pregnancy - fetal growth

Mouse and human co-studies normal pregnancy

- Activation of class E scavenger receptor 1 (SR-E1)+ PMN-MDSCs was observed in all stages of human pregnancy

- ROS and arginase-1 activity, mediated by p-STAT6.

IUGR – poor outcome - mice and humans

- Lower SR-E1 PMN-MDSCs
- Lower arginase-1 activity, ROS, p-STAT6

Shi M et al. Cellular & Molecular Immunology (2021)

Pregnancy Associated BrCA n=16 – P.Schedin

PPBC increased activated T-cells that are PD-1+ and TOX1+ Enhanced signatures of exhaustion – GSEA/Tfh profile from CIBERSORT analyses Mouse models PABR - T-cell suppression and tumor cell immune avoidance

Bernhardt S et al. Nature Comm, 2021; Pennock ND et al. Immunother. Cancer, 2018 Khan O. TOX transcriptionally and epigenetically programs CD8+ T-cell exhaustion. Nature 2019

Pregnancy Associated BrCA n=16

PPBC increased activated T-cells that are PD-1+ and TOX1+ Increased signatures of exhaustion – GSEA/Tfh profile from CIBERSORT Mouse models PABR - T-cell suppression and tumor cell immune avoidance

Leading edge of tumor +PD-1/+TOX1+

Bernhardt S et al. Nature Comm, 2021; Pennock ND et al. Immunother. Cancer, 2018 Khan O. TOX transcriptionally and epigenetically programs CD8+ T-cell exhaustion. Nature 2019

Thoughts for discussion

High throughput modeling

Rozhok AI and DeGregori J. Challenging the axiom: does the occurrence of oncogenic mutations truly limit cancer development with age? Oncogene 2013

ARTICLES https://doi.org/10.1038/s41565-021-01000-4

nature nanotechnology

Check for updates

Intercellular nanotubes mediate mitochondrial trafficking between cancer and immune cells

Tanmoy Saha^{1,2}, Chinmayee Dash^{© 1,2}, Ruparoshni Jayabalan^{1,2}, Sachin Khiste^{1,2}, Arpita Kulkarni^{© 1}, Kiran Kurmi³, Jayanta Mondal^{1,2}, Pradip K. Majumder⁴, Aditya Bardia⁵, Hae Lin Jang¹ and Shiladitya Sengupta 1,2,6 🖂

CD8+

10³

SSC-A

Cancer cells

10⁴

Cancer cel

(double positive)

 10^{2}

CD3⁺ cells

- MDA231 Wnt10B+
- Label cells/mitoch. _
- **Co-culture Boyden**
- Test for mitoch. transfer

Second Pass – Treatment with low-toxicity natural product or drug

- Roziglitizone
- **MDSC** inhibitor
- Wnt/beta-cat inhibitor

Modeling

CD3⁺ T cell

Cancer: CellTrace Far Red

Coculture in

Boyden chambe

First Pass

- MDA231 Wnt10B+
- Label cells/mitoch.
- **Co-culture Boyden**
- Test for nanotube transfer
- Seahorse OCAR/ECAR

Second Pass – Treatment with low-toxicity natural product or drug

Glucose

Glucose

Pyruvate

FAO

Lactate

Fatty

acids

MDSC

Lactate

Fatty

acids

Glycolysis

Pyruvate

Acetyl-CoA

Cytosol

Oxidative

phosphorylation

Mitochondria

NADH

Lipids

NAD+

Citrate

FAS

Glutaminolvsis

Glutamine

Chang and Pearce - Nat Immun 2016

- Shut down FA transport Roziglitizone
- Added FA, glutamine, glucose etc.
- MDSC inhibitor GLPG1205
- Wnt/ β catenin inhibitor Calotropin Calotropis gigantean (Asclepiadaceae)

Modeling

Coculture in

First Pass

- MDA231 Wnt10B+
- Label cells/mitoch.
- Co-culture Boyden
- Test for nanotube transfer
- Seahorse OCAR/ECAR

Second Pass – Treatment with lowtoxicity natural product or drug

- Shut down FA transport Roziglitizone
- MDSC inhibitor PB1-405
- Wnt/βcatenin inhibitor Calotropin

Third Pass – High throughput HMEC/stromal cell culture KI/KO target genes With added MDSC or T-cells

Akt/mTor, beta-catenin, vimentin atypical breast aspirates- African American women contralateral TNBC

Experimental Imaging Vascular/Metabolic Imaging - Photoacoustic Tomography

Vascular/Metabolic Imaging - Photoacoustic Tomography (PACT) - Caltech - Lihong Wang, PhD

- 15 s image acquisition
- 250 u in-plane resolution
- Endogenous fluorescence
- Repeat imaging
- Biological read out
- No compression of breast

Visualization of blood vessels by PACT – combined US-optical tomography Lin et al. *Nature Communication*, 2018

Photoacoustic Tomography (PACT) early detection of occult breast cancer and neovascularization

Visualization of blood vessels by PACT – combined US-optical tomography

Lin et al. Nature Communication, 2018

Serial analysis neoadjuvant chemotherapy tx breast cancer

Initial diagnosis

After chemo Cycle 1 Day 21

After chemo Cycle 2 Day 42

Lily Lai, MD Lisa Yee MD

Lin et al. Nature Communication, 2018